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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3886

AVERAGE PROPERTIES OF COMPRESSIBLE LAMINAR BOUNDARY LAYER
ON FLAT PLATE WITH UNSTEADY FLIGHT VELOCITY

By Franklin K. Moore and Simon Ostrach

SUMMARY

The time-average characteristics of boundary layers over a flat
plate in nearly quasi-steady flow are determined. The plate may be el-
ther insulated or isothermal. The time averages were found without spec-
ifying the plate veloclty explicitly except that it is positlive and has
an average value.

Each -time average involves two groups of terms to the order consid-
ered in the report, a time average of quasi-steady terms, and terms re-
lated to the reduced frequency of the plate veloclity Pfluctuations.

The gquasi-steady terms differ from the values for steady flow at the
corresponding average velocity. These differences are reinforced by the
frequency dependent averages for adlgbatic wall temperature and heat-
transfer rate. The effects oppose one another in the case of skin
friction.

The special case of harmonic veloclty variation i1s consldered, and
it is found thet large amplitudes accentuate the importance of the
frequency-dependent terms.

Oscillating the wall to increase the heat-transfer rate is not ad-
vantageous if the power to oscillate the plate is accounted for, unless
the Prandt] number 1s 1n a certain range.

INTRODUCTION

In many current problems of aerodynemics, unsteady motions of a sur-
Pace are lmportant. The accelerating and decelerating phases of missile
flight and the intermittent flow in an engine during unsteble combustion
are examples. The nature of the boundary layer of these unsteady flows
may be studied with a view to determining friction drag, surface tempera-
ture, and rete of heat tremsfer through the surface. Usually, the bound-
ary layer 1s so thin that it responds almost instantly to temporal changes
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in flow conditions. Thus, the time history of the boundary layer is a
succession of steady states, and such a boundary layer is called guasi-
steady. If the motion involves accelerations which are particularly rap-
18, the guasgi-steady description mey require correction.

In any case, it 1ls often desired to assess the average effect of
fluctuations in flow conditions. For example, if an insulated body 1s in
motion with a speed which varies in time about some average value, the av-
erage friction drag and average surfece temperature may differ from values
eppropriate to steady motion at the average speed. Another example is fur-
nished by the speculation that the net performance of a heat exchanger
could be altered by impsrting an unsteady motion to the wall.

In the present study, as an idealized special case of the foregoing
type of problem, a seml-infinite flat plate is assumed to be in motion
parallel to its surface and normal to its leading edge with a flight veloc-
ity U(t) that is always in the same direction but has a magnitude that
fluctuates with time. The resulting boundary leyer is assumed leminar and
compressible, and the surface 1s either insulated or at constant tempera-
ture. The assumed Prandtl number is 0.72, which is appropriate for alr
under normal conditions.

The boundary layer is assumed t0 be nearly quasli-steady. The basic
boundary-~layer analysis is slready available'for this problem in references
1 and 2, which treat the insulated plate and constant plate temperature
cases, respectively. The velocity profile in the boundary layer is found
in the form

82 [Fr(o) + tozhlo) + tr£i(0) toe e tBgele) ¢ ] ()

where ¢, is the usual Blasius variable signifying parebolic simllarity
in the boundary layer (& complete definition will appeer in a subsequent
section). The function F(o) is the Blasius function for steady motion
of a flat plate. The parameters gn govern deviations from quasi-

steadlness.

. X2 du(m)

bt = v == 1,2,3,“. .. (2)

In cases of flight at substantial gpeed, the factor yo+l usually ensures
that (, ; 1s & rather small quantity. The functions F(o), f5(o), and

fl(c) are avallaeble in reference 1. A full list of symbol notation is pro-
vided in appendix A.

R T
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If the plate surface is insulated, the temperature profile may be
written as

o =1+ L2 3n)r(o, Lo, by b - - o) (32)

where the "recovery factor"”
r = R(g) + goro(a) + glrl(c) .. . F ggroo(c) = S (3b)

and the functions R, Tgs and r; are tabulated in reference 1. TIf the

plate is at a constant temperature at which heat transfer takes place,
reference 2 gives

6 -6, 2 2
® =g, 6. B(o) + 2o (8, - 6a) 8(0) + Loho(0) + Zep(0,, - 0.) 85(0)

+ ¢ th. (o) + i g (o) +. ..
1™ 2c (6, - 6.) 1

+ tElnggo) + v? s + ... (4)
0|"00 2c,(6 -6,y "00

and provides the functions H, S, ho, 8q hl’ and 81

A study of the time-average properties of the flow represented by
equations (1) to (4), when the speed of the platel U fluctuates with
time is described herein. The functions fOO’ T0o’ hOO’ and 850 are

required for thils purpose, and, not being availeble in references 1 and
2, are determined hereln.

A previous report (ref. 3) studies the average rate of heat transfer
from an oscillating flat plate, but differs from the present study in that
the plate is doubly infinite and there is no net motion through the sur-
rounding fluid; on the average, the plate is at rest. Appropriate com-
perisons are made herein between the results of the present study and those
of reference 3.

lIn the present problem, 1f compressibility is important, unsteadi-
ness is restricted to enfer only through motion of the plate. Thus, in a
corresponding wind-tunnel test the model position would be varied mechan-
ically and the tunnel flow would be held constant. The analyses of ref-
erences 1 and 2 for a compressible fluid would not apply for a fixed model
in a pulsing flow.
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DERIVATION OF FORMULAS FOR AVERAGE PROPERTIES OF BOUNDARY LAYERS

The stream function V¥ for nearly quasi-steady flows 1s defined in
references 1 and 2 as

¥ = AICVQUX (o, gO’ ;l: ‘;2: e a) (5)
where
o= % CVIiX (6)

The coordinates X and Y measured in a system with its origin fixed at
the leading edge of the plate are related to those (x,y) in & coordinate
system which is stationary in the fluld by (see sketches (a) and (b))

£ .
X=x+f U at (7)
0
v

0 P

Equation (8) is employed to make the momentum equation independent of the
energy equation. The velocity in the X,Y-system is related to that in
the x,y-system by

u(X,¥Y,T) = ua(x:Y:t) + U(t) (9)

— Uit} . Position of plate

rf:: s

‘ U at

Sketch (a) Coordinstes £ixed in fluid at rest.

ufr)

Bxetch (b) Coordinstes fixed in plate.

RPARC |
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The constant C 1s the proportionality factor in the assumed
viscosity-temperature variation

B o= pC -69— = PVl 59- (10)
[~ -] oo

This constant may be evaluated by matching equation (10) with the Suther-
land formuwla at some appropriate point, for example, at the wall. Thus

6, (6, + 216° R
°=’\}é‘; 8+ 2160 (1)

The unsteady boundary-layer characteristics can be determined from
equations (1) to (6).

Form of Unsteady Boundary-Layer Characteristics

Insulated plate. - The unsteady boundary-layer chsracteristics from
which the average properties will be determined are presented in this and
the subsequent section in a more extended form than in references 1 and

2. The wall shear stresé T, = (U %%) mey be obtained in the following
w

W

dimensionless form from equations (1), (8), and (10}, and from the state
equation for comstant pressure (p@ = Constant):

Cp = o ,\/ = ["(0) + £425(0) + §£5(0) + 2eBo(0) + . . ]
2
(12)

The displacement thickness &% wmay be defined? as

5*5\'/:( -E‘E;%)dy (13)

Upon application of equation (1), the state equation (p@ = Constant), and
equations (3) into (13) there results

2The steady-flow definition of displacement thickness is adopted here-
in. Actually, the displacement effect of the boundary layer is not proper-
ly represented by this definition if the flow is unsteady. However, an in-
vestigation to be reported elsewhere shows that the steady expression is
part of the correct one, and since this expression yields the correct
quasl-steady result its calculation is therefore warranted.
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VX
0% = o 5 qltm (20 - B - [Egto() + LyE1 () + Eifaol=) + - - ]
+m[/(;‘Rdo’+§oJ;°°rodo+glJ;“rldd+§gJ;°roodc+ .. ]
(14)
where
m= (r - 1) M (15)

Isothermsl plate. - The dimensionless wall-shear-stress or local-
gkin-friction coefficients for the case of heat transfer st the plate is
jdentical in form with its counterpart for an insulated plate (eq. (12)).
The constent C is evaluated by assuming that GW in equation (11) is

the adisbatic wall temperature for the insulated plate and the maintained
isothermal tempersture in the heat-transfer case.

The displacement thickness for this case 1s obtained from equation
(1), the state equation, and equations (4) and (13) and is given by

Cv X

N {lii‘i (20 - B) - [egto(=) + &421(=) + Erole) + - - ]
+ “sdo + b, [ dc“;J‘w ac+2f dg+_”]
+28| |"H do + L, ["hydo + ¢ hd"*’gz\fwh dc+_.-]
[Jrmeo o frros vt fron 00§ [

(16)

where
3= (17)

The local rate of heat transfer is given by

q= -k(%%)w (18)

B26¢S
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Using the definition of the Prandtl number, the state equation, and equa-
tions (4), (8), and (10) in equation (18) ylelds

c Cu
¢ = -z (6,-6,) —;‘fi{nn(o) + 5 81(0) +§o[h6(0) +55 56(0)+ . . ]
i ORS - SHORPINN 3[40 (0) + & 5g0(0) + - - ]} (19)

Time Averages for Arbitrary Velocity Fluctuations

It is now assumed thet the velocity fluctuates in a periodic but
otherwise arbiltrary manner, that is,

U(t) = U g(at) (20)

where o 1s the frequency of the fluctuastions and g 1is an arbitrary
positive function so that

- 2%
g = -21? glt) dr =1 (21)
0

where
T = wt (22)
Substituting equations (20) and (22) into equation (2) ylelds
IT ""C
b = 2 B85 ¢ = o7 £200) (23)
2 1 3
£ g
with the frequency parameter £ given by
Q== . (24)

Therefore, for arbitrary fluctuations of the velocity, the average local

skin friction coefficient to order 92 is obtained by applying equations
(20) and (22) to (24) to equation (12) and integrating as in equation (21).
Since for a periodic function,

glg' =0 (25)
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and also

g lg" = ng-(n+l)(g|)_2_ (26)

the following egquation results:

=i . F"(O) +92[250(0) + Z£7(0)] @ -5/2(g1)2
0
(27)
According to the remarks in the previous section, equation (27) holds for
both the insulated and isothermal plates where only the value of C
differs.

In a similar menner the time averages of equations (14), (16), and
(19) are '

— ’Cv,,x 1/2
3t - _ 2 @
T g ﬁimm(zc F) + ot g3/ £ R do

* 92{[% £,() +£g0(=)] s'972(g')2+m*(%£rl s+ [ dc) g'572<s')2})

(28)

for the displacement thickness of the insulated plate;

5% = "Cvx(g_llzlim(ZU-F)+ TJLSdo'+2¢>g 1/2 fHdc

O

¥ saz{ £,(=) + foc(w)] g% (gn)?

+m(2\j‘°°sldc+J\" 00 )W

+z=1=<f h dc+f ) 92(g)2} (29)

for the displacement thickness of the isothermal plate; and

626%
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a C
q= _ch:@ ,,/ p";“’Um 7'(0) g2 + L 5'(0) &/2
‘ 92{[-2- n3(0) +23o(0)] &2 455 [§ 51(0)+ 5g5(0) W}

(30)

for the asverage local heat-transfer rate of an isothermsl plete where

m = m*g?
and
(u)®
¥ = s (31)
-3

The average value of the adigbatic wall temperature (i.e., for the
insulated plate) is elso obtained in a similar manner from equetion (3)
and is given by

[

By _ 14 TIL’;{R(o) &2 + @2[r1(0) + r(0)] g‘z(g')z} (32)

SECOND-ORDER SCLUTTIONS

In order to determine the aversge properties of unsteady boundary

layers to order 92, 1t is evident from equations (27) to (32) that the
second order (in {g) solutions (denoted by double-zerc subscript) must

be known. These solutions are determined in subsequent sections by ex-
tending the results of references 1 and 2.

Differential Equations and Boundary Conditions

The pertial differential equations describing the unsteady flow and
heat transfer of compressible viscous fluids are given in reference 1 as

and

(342)
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In reference 2 it was Pound more convenient to write eguation (34a) as

Cv,

CVe
@T + *YQX - ¥x8 = Pr ®YY + szew - 0,) (‘l"w)z (34D)

where
9 -6
@= 6, - 0. (35)
The appropriate boundery conditions on ¥ are
¥y(X,=,T) = ¥4(0,¥,7) = W(T) (362)
¥(X,0,T) = ¥(X,0,7) = 0 (36b)
For the cage of an insulated surface as treated in reference 1, the bound-
ary conditions on 6 are .
o(X,=,T) = 6(0,Y,T) = 6u (37a) i
and
0y(X,0,T) = 0 (37b)

For an isothermal plete, equations (37) are Feplaced (see ref. 2} by

e(X,=,T) = &(0,Y,T) = O (38a)
and also
@KX,O,T) =1 (38b)
Solutions

The methods of solutions for the insulated and lisothermal plate are
identical to those In references 1 and 2, respectively, but, in each case,
the method is extended herein to yleld second-order results.

Insulated plate. - For this case the boundary-value problem is de-
fined by equations (33), (34a), (38), and (37). Por nearly quasi-steady
flows the stream function glven by equation (5) and the temperature func-
tion given by equation (3a) are substituted into equations (33), (34a),
(36}, and (37) to yileld Lo

o

RZRC
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<o

X Xg! E Xy’
fO'O'O' + ffc,c. =-8 172— + 212 ?— + X fcgngnx fO’ + 2 = Ufo.o,
n=

U
[--] (-]
X

- 2Xfgq E fgn;nx +4 5 é fUCnCnT (39)

n=0
Pr 2 Xy o XU' X<

Tag +Prfrc+? (fO'O') =4Pr(2U_.2_r+§—é—rO+ﬁ I‘g QnT
u ;g;; n

X. X~
+ Efdgrgngnx - §r0§f§ngnx) (40)

fg(”: Cn) = 2; fU(OJ C.n)

f(O,Cn) =0 (41)

rU(O,gn) = r(m’gn) =0 (42)

Introduction of equation (2) makes equations (41) and (42) self-
consistent (i.e., functions of ¢ and [ only). For nearly quasi-

steady flows, §n<k:1 (see refs. 1 or 2); therefore, the functions f and

r can be expanded as follows:

£(0,0) = F(o) + Lofpl0) + 5121(0) + . . . + E&Ego(o) + . . .

+ goglfOl(a) + ... (43)
r(0,8,) = R(0) + Loro(o) + Lyry(o) + . o .+ t3ro(o) + . . .

¥ LobiTo () + - - (44)

Substitution of equations (42) and (44) into equations (39) to (42) and
collection of terms independent of { and those multiplied by §O and

§1 yield the three sets of equations solved in reference 1. Since for

the present purposes the next higher order terms of equations (43) and
(44) are needed (see egs. (27) to (32), e.g.), the terms multiplied by

Qg are collected and yield

ny LI 11 1" = 2P (2 - £} n -
for + FEC - AF'EL + SFUE §(2 - £8) + £5(20 - 385) (45)
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and

Oo+Pr(Fr - 4F'r 0) Pr[Zcrr +2f4rg - BR'f 5y - 3r) fO-F"f - )2]

(46)
in addition to

féo(w) = fc')o(O) = foo(o) =0 (&7)

and

r(')o(o) = roo(w) =0 (48)

The function F and its derivatives are available in reference 4, and
fo,ro and their derivatives are presented in reference 1. Hence, the

second-order functions fOO and roo for the insulated plate are de-
fined by equetions (45) to (48).

Isothermsl plete. - Equation (45) holds for the isothermal plete as
well as for the insulated one. However, for the isothermsl plate, egua-
tions (34b) and (38) replace equations (34a) and (37). The temperature
function glven by equation (4) 1s obtained by lettlng

2
6= B(0,8,) + gttty 8(058,)

2e,(8y
where
h(o,t,) = (o) + Loho(o) + tyh (o) + . . . + 20, (0) + .
+ £bBoy (0) + .
and
5(0,8,) = 8(0) + Losolo) + £81(0) + .« . + Elago(0) + .
O 1 Ol( o)

Substituting equation (4) into equations (34b) and (38) yields those equa-
tions treated in reference 2 independent of { and to order go and §,.

To order CO the following equations are obtalned:

RZRC
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by + Pr(Fhyy - 4F'hyg) = Pr(20hy - 3fghd - 5H'foq + 2hgfy - 8hg)

(49)
sgo ¥ Fr{Fsg, - 4F'syg) = Pr[zcs(’) - 58'f,, - B8l + 284f4 - F'fgg
el (50)
hoo(®) = bee(0) =0 (51)
soo(w) = 300(0)-= o} (52)

The functions on the right-hand sides of equations (49} and (50) are given
in references 1, 2, and 4.

Equations (45) to (52) thus define four boundsry-velue problems for
the functlons fOO’ rOO’ hOO’ and 84p° These problems are solved for s

Prandtl number of 0.72 by a numerical integration method described in
references 1 and 2. The functions are presented in table I.

RESULTS FOR AVERAGE PROPERTIES OF UNSTEADY BOUNDARY LAYER

The following formules are obtained by substituting the resulis of
references 1 and 2, and those of the previous section, into equations (27),
(28), (29), (30), and (32), respectively:

C, = (0.8620) ,‘,;—51[37? - (1.306) ®2 g5/ %g2 4 ] (53)
m

For the insulated plete case,

5% = (1.721) ,‘,C;‘;X g1/2 4 (0.645) u* /2

+ @2 [(1.986) ¢-9/2g12 4 (3.420) m*g'572g'2] + ... (54)

P

= 1 + (0.8480) %[EE + (5.051) & g%g'2 4+ . . J (55)

and for the isothermal plate case,
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— C '
8% = (1.721) /-;‘lx- {(1 +1.15 ®) gL/2 + (0.1673) uw* £5/2
m

+ 92[(1.986 +1.0958) g9/2'2 & (0.3112) w* g-572g'2] +

(56)

q = (0.5912) CP" Cu P {_Té (0.424) *—7_
- g8 [(0.8350) 3 g-772g' + (0.7574) m* g=3/2g'2 +]. . } (57)

Discussion of Quasi-Steady Term

The leading terms (i.e., terms independent of R) of equations (53)
to (57) reflect the nonlinear dependence of the physical quantities on
U, in a quasi-steady situation. Under the restriction that g is posi-
tive, 811l these leadlng terms are, of course, positive.

Obviously, in the completely steady insulated cese, vhen g = 1, all
the leadling terms in the braces equal 1. In the steady isothermsl case,
of course, only the factors involving g became unity. In the general
quasl-steady case, when only the restriction thet g =1 1is applied (eq.
(21)), the magnitudes of the leading terms may be compared with unity (the
steady case) using a special case of the Schwartz inequality (ref. 5),
nemely,

-2

me g2n > gm+n (58)

If the choice myn = 0,1 is made, equation (58) yields

g2 =1 (59a)
For myn = 0,1/2, the result is
e/ <1 (59b)

For myn = 3/4,1/4, 33;2 gl;z 2g= 1, and therefore, in view of equation
(59p), yields

;37—5 21 (59¢)

626¢<
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If m=n=1/4, g/2 g /23 1, wnich, together with equation (59b),
yields ' '

g l/2 21 (594)

If m,n = 5/4,1/4, then g5/2 glf2 > g3722, therefore, in view of equa-
tions (59b) and (59c¢), yields

/2 >1 (59€)

Insulated surface. - Inspection of equations (53) to (55), together
with equations (59), shows that for the insuleted surface case, the quasi~-

steady values of E}, 5%, and 5& are always greater than or equal to the
corresponding quantity for uniform flow at the average velocity Up.

The foregoing effects are clarified by consldering the average veloc-
ity profile. For example, suppose that for half the time, g = 1/2, and
for the reést of the time, g = 3/2, so that g = 1 (fig. 1(a)); for in-
compressible flow, the average quasli-steady veloclty profile is

SRR

The result eppears in figure 1(b); the dash-dot lines represent the in-
stantaneous quesi-steady profiles at the low and high velocities, the dash
line represents the Blasius profile for the average (as 1f g = 1}, and
the solid line is the average profile from equation (60). The velocity
from equation (60) is greater than the Blasius value near the wall and
less than that value far from the wall. These profile differences are
more pronounced if the variation of stream veloclity is more extreme; if

g = 1/2 for nine-tenthe of the time and if g = 11/2 for the rest (fig.

1(c)), then
&2 [ () e ()

The result appears in figure 1(d). The deviation of the average profile
from the Blasius shape clearly implies increased skin friction, and also
suggests an increase of &%, '

Note that the effects just discussed can be determined without fully
specifying the function g. All that is needed 18 a specification of the
proportion of time during which the various velocity values apply; in ef-
fect, & probability density distribution for velocity is sufficient. In
deriving equations (60) and (61), the illustrative velocity functions were
chosen for simplicity; of course, the present analysis would not apply near
the sudden velocity changes which were postulated.
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Heat transfer. - If there is heat transfer at constant wall temper-
ature,- the quasi-steady value of &% from equation (56) is greater than .
the Blasius value unless & is nearly at its maximum negative value, -1,
which corresponds to a wall tempersture of absolute zero. The heat-

transfer rate ¢ must be regarded as a function of & and n* (eq. (56)).
The finer cross-hatched plane of figure 2 denotes g as a function of &

and m* for the average Um(g =1). Positive q denotes heat flow out

of the surface into the gas. If g 1s not elways 1, then the first term

of equation (57), independent of m¥, tends to diminish the magnitude of
quasi-~steady heat-transfer rate. The second term, proportional to m¥
and independent of &, always provides less heat flow out of the surface.
The result is sketched as the coarser cross-hatched plane of figure 2.

626¢

Figure 2 indicates that varisble stream velocity results in increased
heat transfer to the wall only in the case of a cooled (q < o) wall, and

even then only if mw¥ has a value so that

n¥ > (-8) 1 - 8112
= 0.424
g572

in cases of negative &, If & > O, the condition of zero average heat
transfer is

(62) -

-1

n¥ = - é__.é?Z? (83)
57

Discussion of Frequency-Dependent Terms

Equation (53) indicates that average skin friction is diminished in
proportion to the square of the frequency. The dominant factor in this
effect is the response of the boundary leyer to rate of change of accelera-
tion (£7(0) in eg. (27)). In respect to skin friction, the quasi-steady

term and the frequency term are in opposition. Subject to the requirement
that R<<1, a flat plate will experience a diminished average drag if

/2 -1

e > (64)

(1.306)g >/ 2g12

Owing to the appearance of g‘z in inequality (64), dbrupt velocity
changes would favor drag reduction. -
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Insulated' surface. - The average value of 8*,_from equation (54),

wlll incresase with Qz. The adigbatic wall temperature increases with
&2 » which reinforces the effect of the quasi-steady term.

Heat transfer. - From equation (57), the terms proportional to 92
all relnforce the effects of the quasi-steady terms with respect to the

gteady value. That is, the 92 term in & reduces the magnitude of g
as does the quasi-steady term since gl;z < 1, and the negative value of

the 92 term in mw® 1is consistent with the corresponding quasi-steady
term since 85;2 2 1.

In the heat-transfer case, the 92 terms of &% &also reinforce the
corresponding quasi-steady terms, when the groups depending on $ and

n® are considered separately, Jjust as in the foregolng discussion of q.

Results for Harmonic g(t)

It may often be of interest to evaluate equations (53) to (57) when
the function g is speclialized to have harmonic form -

g= 1+ €sin-T

where the restriction 0 < € < 1 1is imposed so that flight direction is
not reversed.

Arbitrary e&. - The various integrals are evaluated for arbitrary
€ 1in appendix B in the order of their appearsasnce in eguations (53) to
(57), with the following results:
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I, = Eﬁ = -52— AT + e [4E(x) - (1 - &) K(k)] (B1LO) A ~
B(k) '
I,= &5/2%g2 = /\If:iTE 1(_ - . K(k)] (BL3)
~-1/Z _ _ 2K(k) (B1)
i P N
= o-9/2..2 _ 2 &
=88 1052 AfT + & (1 - £2)2
x [(3 + 166 - 66?) B(x) - 2(5 + 4¢ - 362) K(x)] (B15)
Ig Eg—2= 1+ -523 . (B4) )
I.= g"zg'z = -1 + —r ' ' (B5) (85) -
° 1l - ez
1,= g% = ENML e gy (82) '
1g= ¢/2 = Q&E Ezs + 9¢2) B(k) -8(1 - ¢) K(x)]  (m11)
To= g /312 4
° AL+ e (1-¢2)
[1 +12: + 6t: E(k) - K(k):l (B14)
Io = g 212 _ ~ZAT+e |EE) - JL] (B12)

where

=A]2e:/(1 + E) (B3)

and K and E are the complete elliptic integrals of the first and sec- _
ond kind, respectively. The results are presented in table II. -
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Small €. - In the event that €& i1s very small, to a first approxi-
mation, each of the foregoing equations for arbitrary & may be replaced
by making the appropriate substitution for N in the formulas

gN="=1+i:N(N-l) g2

_ (68)
gNg1? % &

¢ Near unity. - If & -is near unity, then k (eq. (B3)) is also

near unity, or k' = I\/l - k2 = A[:I'. - & 1is nearly zero; and the asymp-
totic relations '

4 -
AL -¢

apply (ref. 6). Equations (65) become

1 -¢€

K(k) = 1In B(k) = 1

g_12+d2m 4
x 1-c¢

a2z, 2AE_ 1 (i, 4 _13
lOS:n:(l_s)Z\ ,ﬁ___; 8

2 3. 2 _.2 A2
g >3 g 8 ->2 — > (87)
g}_72_’2d12; g572"323,12

/2.2, A2 1 (ln 4 _9)

g e 5% L - ¢ T - ¢ 2

52572 o 22 (m L _ )
X Al - ¢
Thus, as €& -+ 1, equations (53) to (57) show that the effect of the
2

Q terms is greatly accentuated because thelr coefficients approach in-
finity from equations (67). For example, equation (53) becomes

Cr =+ (0.6640) 1/;—\’5[(1.20) - (0.3918) T%Z_e““ - ] (e8)

It should be noted that under these circumstances (& -+ 1) the higher order
terms in 9% become significant.
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REMARKS ON HEAT-TRANSFER PROBLEM

In a previous section it was shown thet the heat-transfer rate with
an oscillating surface differs from thet with a surface 1n steady motion
(see fig. 2). The relative merits of the oscillations, however, depend
upon the particular configuration or application. For example, it has
been determined that a greater heat-transfer rate to a cooled osclllating
wall can be obtained for & < 0 provided that inequality (62) applies.
This result suggests that if one wishes to increase the rate of heat &b~
straction from a gas flow over a cooled surface (as, e.g., in a heat ex-
changer), it may be advantageous to oscillate the surface mechanicelly in
ite own plane so that the relative stream velocity oscillates. The power
required to osclllate the plate should properly be asgsessed to the system,
because unless this power is less than the additional heat transfer ob-
tained, that power could be used to increase the energy obtained with the
surface fixed or in steady motion. Of course, if the oscillations were
inherent to the system, the assessment would not be required.

If the power required to oscillate the plate 1is taken into account
the comparison is as follows: The excesg of power required beyond that
corresponding to steady flow is given by3

= |55 - Ugr, ] ax = § ot ﬁ‘ 7 - co(uy)] ax (e9)
O .

and the increment of heat transfer into the wall owing to the oscillation

is
2Q = -J;X [2 - aty)] ax (70)

where X 1s the length of the plate.

Equation (69) can be evaluated from equation (53), because g, 1is
given by the same formula as 6; with the exponent of g increased by
1 vherever it appears in equation (53):

3The formula used for AP .accounts for all the power required to
maintain the plate in flight. If only that power régquired to oscillate the
plate in a steady wind-tunnel flow or in a statlonary heat exchanger were

desired, the formula AP = g)gx (U - Umi Ty X would be used, which is

less than that given in equation (69) in the amount \,[O‘x ﬁ[ﬂ - ;Ew(Um)] ax.

Equation (69) is selected for discussion on the grounds that the difference
cited would usually be charged as an energy loss of a practical alrborne
system.

646¢
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AP = (0.6640) pUo IC:;X [E572_ -1 +O(saz)] (71)

Equation (70) can be evaluated directly from equation (57), setting
g= 1 to define q(Um):

Cpf Pedly ’C“»X
= (0.5912) e o

x [( - 8?_) & + (0.424) m ( 1) +0(92)] (72)

The question is whether AQ > AP. Therefore, equation (71) is sub-
tracted from equation (72) to yield

AQ - AP = (0.5912) CP i ’Cv X [(1 . _7_)

+ (0.424)(1 - 2.85 Pr)(;57§ - 1) w* +0(522)] (73)

Thus, if AQ - AP > O,

=] 72
e—"i - 1> (0.424)(2.65 Pr - 1) w" gl -1 (74)
® 1 - g172

If the gas in question is air with a Prandtl number of 0.72, then the con-
stant is

(0.424)(2.65 Pr - 1) = 0.385 - (74a)

e
Thus, for this case, if inequality (74) is to hold, -é-"—r - 1 must be posi-
[--)

tive. Now, the greatest value which GW/Guo can approach consistent with

heat flow into the surface 1s the insulated surface value from equation
(55). Thus, inequality (74) becomes

— 6 7z '
0.424 mtgl > e—‘“’ -1 > 0.385 ¥ g% - 1 (75)
[--] l - 8_1_7-2.
or,
— 72
1101 g2 > &% -1 (76)

1 - gi/2
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It 1is doubtful that any reasonsble function of g can be devised to
setisfy inequality (76). Inspection of teble II shows that inequality
(76) cannot be satisfied by a harmonic function of any emplitude. There-
fore, for sir at normal conditions, the power required to oscillate the
plate would exceed the extra heat transfér obtained by oscillation.

However, the constant of equation (74a) 1s especially semsitive to
Pr and if, for example, '

1 B ]
Pr < E—-—G'g = 0.3772

then the constant of equation (74a) would be negative. Thus, in this
case, when the constant in inequality (74) is negative, inequality (74)
can be satisfled for a range of reasonable cooled-wall temperatures,
beglinning with a minimum value less than Gw by an amount depending on

m*. In this circumstance 1t is advantageous to oscillate the plate, par-

ticularly for large m¥*. o

The results of the foregoing discussion may be compared with the
result of reference 3, wherein it was concluded that oscillation of a
doubly infinlte plate in a fluld otherwise at rest would also result in
an lncreased heat transfer to the plate greater than the extrea power re-

8y —-
quired only if 7 > 1.

FPor a stationary configuration, ineQuality (74) 1s computed using
the AP expressilon in footnote 3 and is glven by

dw ., , 0.424 o*[2.65 pr(B/Z - B1?) +1 - §§7§]
5 —

» 1 - gl/e

In this case beneficlal effects of the oscillation are obtalned for some-
what larger Prandtl numbers (Pr < 0.5 approximately for harmonic oscilla-
tions). In any case for Pr -+ 0 it mekes no difference how AP is com-
puted (see eqs. (71) and (73)), because AQ will always exceed AP.
Therefore, for fluilds with low Prandtl numbers, such as liguid metals,
the oscillations will always yield greater heat-transfer rates.

CONCLUSIONS' -

The unsteady laminar boundary leyer on & flat plate 1n compressible
flow has been analyzed for the case of time-varigble veloclty of flight
with a view to describing the time-average characteristics of such a

6265
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boundary layer. Flight velocity is assumed to vary slowly enough so that
the resulting boundary-layer flow is nearly, but not quite, quasi-steady.
The wall temperature has been assumed constant both along the plate and
in time; further analysis would be required for the case of fluctuating
surface tempersture.

In order to obtain time averages, the expansions of flow quantities

_ Xu'(+) XZU“('I;)

must include terms in {5 = = N §l = B and gg. The terms for

§0 and §; were taken from previous work, while the gg terms were ob-
tained by numerical integration, and are presented in tebular form hereln.

The time-averages of skin friction and "displacement thickness" are
presented, as well as heat-transfer rate at the surface, and for the spe-
clal case of an adisbatic wall, the surface tempersture.

A significant amount of information may be obtalined without specify-
ing U(t) beyond the requirements that U(t) remasin positive and have an
average value Uy. ZEach time average involves two groups of terms, to the

order contemplated in the present report: A time average of quasi-steady
terms, and terms proportional to the inverse square of the characteristic
time of the velocity fluctuation (i.e., the square of reduced frequency) .

The quesi-steady terms differ from the values for steady flow at the
corresponding average veloclty, owlng to the nonlinear dependence of the
physical quantities on U(t). In fact, especlally for extreme variations
of U(t) about the mean value, the average veloclty profile is steeper
near the wall and more gradual in its outer portion thar the Blasius pro-
file which applies at each instant. Thus, in the quasi-steady approxi-
mation, skin friction, "displacement thickness," and adisbatic wall tem-
peratures are greater on the average than for the case of constant
velocity. The magnitude of the part of the heat-transfer rate that 1s
independent of Mach ‘number is less in the quasi-steady aspproximation,
whereas the Mach-number dependent part differs in the direction of less
heat out of the surface intoc the gas.

The differences cited are reinforced by the frequency dependent
averages for adisgbatic wall temperature and heat-transfer rate. The ef-
fects oppose one another in the case of skin friction.

The various time averages are derived for the special case of harmon-
ic velocity variation. Large amplitude affects chiefly the frequency-
dependent terms, greatly accentuating their importence.

The question discugsed is whether it would be advantageous to oscil-
late the surface of & heat exchanger in order to teke advantage of the
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increased rate of heat tramsfer to the wall, and 1t 1s concluded that the
heat-transfer advantage would generally be vitiated by the power require-
ment for osclllating the surface agalnst the action of skin friction, un-

less the quantity 2.65 Pr is less than unity.

Lewis Flight Propulsion Legboratory .
Natlonal Advisory Committee for Aeronautics
Cleveland, Ohio, September 5, 1956

626¢



3329

CA-4

NACA TN 3886 25

APPENDIX A

SYMBOLS
constant defined by eq. (11)

local skin-friction coefficient
specific heat at constant pressure

related to stream function for flat plate in steady flow

functions related to stream functlion for unsteady flat-plate flow,
i=0, l, 2, OO, . . -

Punction related to plate velocity, defined by eq. (20)
temperature functlion related to steady isothermal flat-plate flow

functions related to temperature for unsteady isothermal flat-~-plate
flow, 1 =0, 1, 2, 00, . .

thermal conductivity coefficlent

Mach number

function related to Mach number, defined by eq. (15)
constant defined by eq. (31)

general exponent

power

Prandtl number

total heat-transfer along plate

local heat-transfer rate

function related to temperature for steady insulated flat-plate
flow

functions related to temperature for unsteady insulated flat-plate
flow, i = 0, 1, 2, 00, .

function related to temperature for steady isothermal flat-plate
flow
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functions related to temperature for unsteady lsothermal flat-plate
flOW, i = 0, l, 2, OO, « s s
time
stream or plate velocity in X-direction (see sketch (b))

mean velocity

relative velocity in X-direction

gahsolute veloclity in x-direction

coordinate along surface measured from leading edge
coordinate along surface in system fixed in filuid (see sketch (a))
coordinate defined by eq. (8)

coordinate normal to surface

ratio of specific heats

displacement thickness

amplitude of velocity fluctuations

dimensionless parameter, n = 0, 1, 3, « « . (eq. (2))
dimensionless temperature difference

temperature

absolute viscosity coefficient

kinematic viscosity coefficlent

density

dimensionless coordinete, defined by eq. (6)

Y Upy
dimensionless coordinste, s ALY

function related to time by eq. (22)

local wall shear stress

626%)
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& constant defined by eq. (17)

¥ stream function

Q frequency parameter, defined by eg. (24)
W frequency of veloclty fluctuations
Bubscripts:

W evaluation at wall (Y = 0)

o evaluation in stream (¥ - =)

Subscript notation for partial differentlation is used when conven-
ient. Primes denote ordinary differentiation.

Superscripts:

time average as defined in eq. (21)
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APPENDIX B

DETERMINATEON OF INTEGRALS FOR HARMONIC OSCILLATIONS

Given that g(T) =1 + & sin T, the various averages appearing in the

equations are to be found. The averages g'l; 2 and gl;z can quickly be
expressed as complete elliptic integals by replacing T by 2z and tak-
ing account of the symmetry of the integrands:

ey - an de - /2 dz 2K (k)
2n. Jo Al+vesint Al +e 5 AL - K2sinZz  wAL + ¢
(B1)
an
: /2
gl/2 = zi- Al ¥ esint dt = ealre J/ /\ll - k2gin®z dz
T Jo x 0
= ZIViz+ & B(k) (B2)
where

k= 4/25/(1 + &) (B3)

and K(k) and E(k) are complete elliptic integrals of the first and sec~
ond kind, respectively, (egs. (773.1) and (773.3), and tables (1040) and
(1041) of ref. 8).

With help from equations (858.3), (436.00), and (436.03) of reference
6, these results are obtained:

2n 2
g2=—]—'- (l+esin't)2d't=1+—§- (B4)
2n _Jo 2
—_— 2 2n 1
8—28'2 = g—ﬂ (L + ¢ sin 1:)'2 coglT 4T = -1 + (B5)
o} 1l - 82
The remaining averages are of the forms
2n
Ner 4 N3
g = o= (L + e sin %) av (B6)

626%
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and also
—_— 2%
N+ L 5 2 N+12'-
g “g'¢= %{- (L +¢ sin 1) cos?t gt
0
2n - 1
2y 1
= -(1 - &%) o= (L + & sin %) av
T
(9}
21
1 N*%
+ 3 (1L + ¢ sin t) at
0
2n 5
1 N
- Z= (L + ¢ sin 1) dz (B7)
0

Thus, equation (B7) can be evaluated knowing equation (B6), which may be
obtained from a recursion formula, as follows: From integrating by parts,

an 1 n 3
52 N-I-Z- 21'_ £ N+§
ﬁ (l + €& gin ‘C) cos dt = m (l + € sin T) sin v dv
0O 0
2x
1 g
= (2K + 3) (1 + & 8in ) at
0]
2n
W
- (1 + & sin 1) at (B8)
0

Combining equations (B7) and (B8) yilelds
3 A sy M3
(N + E)(l - €2 g -2(FR+2) g + CN + 5) g =0 (B9)

3
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Substituting equations (Bl) and (B2) into (B2) yields all necessary rela-
tions for evalusting equations (B6) and (B7):

S22 T - (1- oK . (B10)
&2 = Z AT+ [(25 +92) E - 8(1 - ¢) K] (B11)
2512512 = _% N s (E - ’fe) (B12) g
5/2,.2 _ 4 E__
& € 3xAl + & (1 - ¢ ) (B13)
_:775—75', 4 (i + 26 + 6€2 E-K (B14)
¢ ° 150N + e (1 - £28) Lt )

g-9/2512

= [(3 + 166 - 6¢2) E - 2(3 + 4¢ - 3¢2) K] .

2
105xA1 + € (1 - 52)

The foregoing averages are presented in table ITI as functions of e.

(B15)
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TABLE I. - SECOND-ORDER SOLUTIONS

o 80 Tho £oo Tdo Tog bdo oo ) 500
0 Ji.o8350( 0 ) 0 1.51298 | -0.13182 o} 1.03328 | ©O
.1 [1.052001| .10728 .00539 | -.45493 | 1.a8g21 -.13245 -.01321 .60292 .08043
.2 | .96756| .20864 .02126 | -.79778 | 1.42573 -.13329 | -.02649 31413 .12530
.3 | .84501{ .29952 04677 | -1.04778 | 1.33275 -.13283 | -.03981 .12345 .14650
.4 | .69821| .37683 .08071 | -1.22022 | 1.21876 -.12966 | -.05296 -.00100 .15217
.5 | .53920} .43876 .12182 | -1.32738 | 1.09088 -.12273 -.06562 -.08207 14773
.6 | .37789 | .48460 .16792 | -1.37922 .95513 -.11146 | -.07737 -.13533 .13668
.7 | .22196| .51452 .21801 | -1.38385 .8166C -.09577 | -.08776 -.17062 .12125
.8 | .07702] .52938 .27032 | -1.34855 67967 -.07608 | -.09638 -.19353 .10297
.9 [-.05306 | .53042 .32342 | -1.27929 | .54802 -.05328 | -.10286 -.20673 .08287
1.0 |-.16583 | .51932 .37600 | -1.18215 42474 -.02857 | -.10696 -.21121 .06190
1.1 |-.25985| .49788 .42694 | -1.06312 .31232 -.00329 | ~.10855 -.20687 .04093
1.2 |-.33452 | .46800 47530 | -.92844 .21264 .02116 | -.10764 -.19421 .02081
1.3 |-.38974 | .43162 .52032 | -.78455 .12694 .04352 | -.10439 -.17382 .00237
1.4 |-.42593 | .39069 .56147 | -.63797 .05582 .06272 -.09905 -.14709 | -.0L373
1.5 |-.44399 | .34704 .59837 | -.494898 | -.00077 .07802 | -.09199 -.11611 | -.02692
1.6 |-.44530 | .30245 .63085 -.36120 | -.04348 .08895 | -.08380 -.08334 | -.03689
1.7 |-.43189 | .25847 .65888 | -.24104 | -.07347 .09541 | -.07435 -.05113 | -.04361
1.8 |-.40628 | .21648 .68261 | -.13766 | -.09225 .0753 -.06466 -.02166 | -.04721
1.9 [-.37091| .17753 .70228 | -.05322 | -.10164 .09577 -.05436 .00335 | -.04809
2.0 {-.32905| .14254 .71825 .01202 | -.10354 .09073 -.04562 .02295 | -.04674
2.1 |-.28380] .11182 . 73092 .05906 | -.09984 .08314 | -.03690 .03695 | -.o4369
2.2 |-.23782| .08580 . 74078 .08980 | -.089227 .07381 | -.02905 .04565 | -.03953
2.3 |-.19386| .06419 . 74823 .10679 | -.08234 .06352 | -.02216 .04975 | -.03472
2.4 |-.15345]| .04688 .75374 11281 | -.07128 .05298 - 01635 .05009 | -.02969
2.5 |-.11804 | .03339 .75776 .11065 | -.08005 .04278 -.01156 .04770 | -.02479
2.6 |-.08819 | .02304 . 76051 .10287 | -.04934 .03338 | -.00776 04347 -~.02022
2.7 |-.06387 | .01559 .76247 .09172 | -.03952 .02507 -. 00486 -.03828 | -.01613
2.8 |~.04484 | .01008 . 76369 .07900 | -.03105 .01799 -.00271 .03263 | -.01258
2.9 |-.03052 | .00642 . 76452 .06587 | -.02380 .01225 | -.00121 .02698 | -.00961
3.0 |-.02006 | .00392 . 76507 .05335 | -.01785 .00776 | -.00022 .02171 | -.00717
3.1 |-.01271| .00223 .76528 .04207 | -.01309 . 00440 .00038 .01704 -.00525
3.2 [-.00773| .00L34 . 76557 .03233 [ -.00939 .00200 00069 L01304 | -.00374
3.3 |-.00448 | .00060 76555 .02424 | -.00657 .00040 .00081 .00976 | -.00260
3.4 |-.00238| .00038 . 76566 01774 | -.00449 -.00059 . 00080 .0071¢ -.00177
3.5 [-.00116 | .00018 . 76573 .01268 | -.00297 -.00111 .00071 .00509 -.00118
3.6 |-.00048 | .00006 76562 .00886 | -.00191 -.00133 .00059 .00355 | -.00075
3.7 {-.00015| .000L3 .76579 .00604 [ -.00117 -.00133 . 00046 .00243 | -.00044
3.8 | .00009 | -.00003 . 76561 .00403 | --00067 -.00124 . 00033 00164 -.00022
3.9 00010 . 00014 . 76575 00263 | ~.00034 -.00106 . Q0022 . 00108 -.00009
4.0 | .00018 | .00008 .76576 .00169 | -.00M3 -.00087 .00012 .00070 -.00001
4.1 | .00021| .00013 . 76565 .00106 .00000 -.00070 .00003 . 00045 . 00004
- - - -
'-/01 foq 4o =2.5490 -.[ Tog do = 1.0422 "[ bog do = -0.1633 £ Sog 40 = 0.0713
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W
w0
0y
0
TABLE II. - EVALUATION QF INTEGRALS
€ Il Iz 13 14 IS :Is - - 17 IS Ig xlo
c.2 1.00748 .02087 | 1L.00789 02269 | 1.020 02059 [0.99747 | 1.03747 02168 02050
.4 |1.03019 .09673 { 1.03289 13704 | 1.080 - 08107 98860 | 1.14863 .11282 . 08680
.6 1.08872 .29227 | 1.08539 .71028 | 1.180 24999 .97522 | 1.33554 .43430 .22032
.8 |1l.12432 96153 | 1.20018 7.28120 |'1.320 66663 .95129 | 1.59356 | 2.41368 .49776
.8 | 1.15938 | 2.368511 | 1.33236 63.68454 | 1.405 1.29413° | .93287 | 1.74880 |10.88546 . 79898
95 1 1.17904 | 5.30960 | 1.47483 | 529,649 1.45125 | 2,20252 | .92025 | 1.83273 | 45.84304 | 1.10872

T puersy

- Y
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Velocity profile
— Mne average, E/Um

~—— — ——— Instanteneous Blasius, u/U{g = 1/2)
Instanteneous Blasius, u/U(g = 3/2)
——— e e~mweee Blesius for steady flow, U,

82 ’//;

(4
1
[o] 1 [o] 5 1.0
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Figure 1. - Effect of plate velocity variation on profile of aversge velcelty in boundery layer.
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Figure 1. - Concluded. Effect of plate velocity variation on profile of average velocity in
boundery layer.



’,

WM\

[~

= N

\\\K\\W\

um m
. =
/4
<



